A. Pengertian Turunan
Turunan adalah pengukuran terhadap bagaimana fungsi berubah seiring perubahan nilai yang dimasukan, atau secara umum turunan menunjukkan bagaimana suatu besaran berubah akibat perubahan besaran lainnya. Proses dalam menemukan turunan disebut diferensiasi.
Pada fungsi y = f(x), turunan dari variabel y terhadap variabel x dinotasikan dengan atau atau y’ dan didefinisikan sebagai:
B. Aturan menentukan turunan fungsi
Turunan bisa kita tentukan tanpa adanya proses limit.
Untuk kebutuhan ini dirancang teorema atau pernyataan mengenai turunan dasar, turunan dari operasi aljabar pada dua fungsi, aturan rantai untuk turunan fungsi komposisi, dan juga turunan fungsi invers.
C. Turunan dasar
Beberapa aturan dalam turunan fungsi antara lain:
- f(x), menjadi f'(x) = 0
- Jika f(x) = x, maka f’(x) = 1
- Aturan pangkat berlaku jika f(x) = xn, maka f’(x) = n X n – 1
- Aturan kelipatan konstanta berlaku jika (kf) (x) = k. f’(x)
- Aturan rantai berlaku jika ( f o g ) (x) = f’ (g (x)). g’(x))
D.Turunan jumlah, selisih, hasil kali, serta hasil bagi dua fungsi
Contohnya fungsi f dan g terdiferensialkan pada selang I, maka fungsi f + g, f – g, fg, f/g, ( g (x) ≠ 0 pada I ) terdiferensialkan pada I dengan aturan sebagai berikut:
- ( f + g )’ (x) = f’ (x) + g’ (x)
- ( f – g )’ (x) = f’ (x) – g’ (x)
- (fg)’ (x) = f’(x) g(x) + g’(x) f(x)
- ((f)/g )’ (x) = (g(x) f’ (x)- f(x) g’ (x))/((g(x)2)
E. Turunan fungsi trigonometri
- d/dx ( sin x ) = cos x
- d/dx ( cos x ) = – sin x
- d/dx ( tan x ) = sec2 x
- d/dx ( cot x ) = – csc2 x
- d/dx ( sec x ) = sec x tan x
- d/dx ( csc x ) = -csc x cot x
F. Turunan fungsi invers
(f-1)(y) = 1/(f’ (x)), atau dy/dx 1/(dx/dy)
G. Rumus Dasar Turunan dari Turunan Fungsi
Beberapa aturan yang ada di dalam turunan fungsi antara lain:
- f(x), menjadi f'(x) = 0
- Jika f(x) = x, maka f’(x) = 1
- Aturan pangkat berlaku jika f(x) = xn, maka f’(x) = n X n – 1
- Aturan kelipatan konstanta berlaku jika (kf) (x) = k. f’(x)
- Aturan rantai berlaku jika ( f o g ) (x) = f’ (g (x)). g’(x))
H. Rumus-rumus Turunan Fungsi AlJabar
1. Rumus Turunan Fungsi Pangkat
Turunan Fungsi berbentuk pangkat, turunannya bisa memakai rumus: sebagai berikut:
Sehingga, rumus turunan fungsi pangkatnya adalah:
2. Rumus turunan hasil kali fungsi
Rumusan Fungsi f(x) turunan yang terbentuk dari perkalian fungsi u(x) dan v(x), adalah sebagai berikut:
Sehingga, rumus turunan fungsinya yaitu:
f'(x) = u’v +uv’
3. Rumus turunan fungsi pembagian
Sehingga, rumus turunan fungsinya yaitu:
4. Rumus turunan pangkat dari fungsi
Perlu diingat, jika f(x) = xn , maka dari itu:
Sehingga, rumus turunan fungsinya yaitu:
f'(x) = nu(n – 1) . u’
5. Rumus-rumus Turunan Trigonometri
Berdasarkan definisi dari turunan, maka bisa kita dapatkan beberapa rumus turunan trigonometri yaitu sebagai berikut: (dengan u dan v masing-masing fungsi dari x), antara lain: y’ =
- y = sin x→ y’ = cos x
- y = cos x → y’ = -sin x
- y = tan x → y’ = sec2 x
- y = cot x → y’ = -csc2 x
- y = sec x → y’
- y = csc x → y’ = csc × cot x
- y = sinn xy’ = n sinn-1 × cos x
- y = cosn x → y’ = -n cosn-1 × sin x
- y = sin u → y’ = u’ cos u
- y = cos u → y’ = u’ sin u
- y = tan u → y’ = ui sec2 u
- y = cot u → y’ = -u’ csc2 u
- y = sec u → y’ = u’ sec u tan u
- y = csc u → y’ = u’ csc u cot u
- y = sinn u → y’ = n.u’ sinn-1 cos u
- y = cosn u → y’ = -n.u’ cosn-1 . sin u
I. Turunan Fungsi Aljabar
*Definisi Turunan
Turunan fungsi f(x) terhadap x didefinisikan oleh:
dengan syarat limitnya ada.
*Notasi Turunan
Turunan pertama fungsi y = f(x) pada x bisa kita notasikan seperti berikut ini:
- y’ = f’x ⇒ lagrange
- ⇒ leibniz
- Dxy = Dx[f(x)]⇒ euler
Dari definisi di atas bisa kita turunkan beberapa rumus turunan seperti di bawah ini:
- f(x) = k ⇒ f ‘(x) = 0
- f(x) = k x ⇒ f ‘(x) = k
- f(x) = xn ⇒ f ‘(x) = nxn-1
- f(x) = k u(x) ⇒ f ‘(x) = k u'(x)
- f(x) = u(x) ± v(x) ⇒ f ‘(x) = u'(x) ± v'(x)
dengan k = konstan
Perhatikan beberapa contoh berikut ini:
- f(x) = 5 ⇒ f ‘(x) = 0
- f(x) = 2x ⇒ f ‘(x) = 2
- f(x) = x2 ⇒ f ‘(x) = 2x2-1 = 2x
- y = 2x4 ⇒ y’ = 2. 4x4-1 = 8x3
- y = 2x4 + x2 − 2x ⇒ y’ = 8x3 + 2x − 2
Untuk mencari turunan dari fungsi yang memuat bentuk akar atau pecahan, langkah pertama yang harus kita lakukan yaitu merubah terlebih dahulu fungsi tersebut ke dalam bentuk pangkat (eksponen).
Berikut terdapat beberapa sifat akar dan pangkat yang sering dipakai, atara lain:
- xm . xn = xm+n
- xm/xn = xm-n
- 1/xn = x-n
- √x = x1/2
- n√xm = xm/n
Tidak ada komentar:
Posting Komentar