Jumat, 11 Oktober 2019

Turunan Fungsi (1 Variabel)



A. Pengertian Turunan
Turunan adalah pengukuran terhadap bagaimana fungsi berubah seiring perubahan nilai yang dimasukan, atau secara umum turunan menunjukkan bagaimana suatu besaran berubah akibat perubahan besaran lainnya. Proses dalam menemukan turunan disebut diferensiasi.
Hasil gambar untuk materi turunan fungsi GAMBAR
Pada fungsi y = f(x), turunan dari variabel y terhadap variabel x dinotasikan dengan \frac{dy}{dx} atau  \frac{df(x)}{dx} atau y’ dan didefinisikan sebagai:
f'(x) =\lim\limits_{h\to 0}\frac{f(x+h)-f(x)}{h}

B. Aturan menentukan turunan fungsi
Turunan bisa kita tentukan tanpa adanya proses limit.
Untuk kebutuhan ini dirancang teorema atau pernyataan mengenai turunan dasar, turunan dari operasi aljabar pada dua fungsi, aturan rantai untuk turunan fungsi komposisi, dan juga turunan fungsi invers.
C. Turunan dasar
Beberapa aturan dalam turunan fungsi antara lain:
  1. f(x), menjadi f'(x) = 0
  2. Jika f(x) = x, maka f’(x) = 1
  3. Aturan pangkat berlaku jika f(x) = xn, maka f’(x) = n X n – 1
  4. Aturan kelipatan konstanta berlaku jika (kf) (x) = k. f’(x)
  5. Aturan rantai berlaku jika ( f o g ) (x) = f’ (g (x)). g’(x))
D.Turunan jumlah, selisih, hasil kali, serta hasil bagi dua fungsi
Contohnya fungsi f dan g terdiferensialkan pada selang I, maka fungsi f + g, f – g, fg, f/g, ( g (x) ≠ 0 pada I ) terdiferensialkan pada I dengan aturan sebagai berikut:
  1. ( f + g )’ (x) = f’ (x) + g’ (x)
  2. ( f – g )’ (x) = f’ (x) – g’ (x)
  3. (fg)’ (x) = f’(x) g(x) + g’(x) f(x)
  4. ((f)/g )’ (x) = (g(x) f’ (x)- f(x) g’ (x))/((g(x)2)
E. Turunan fungsi trigonometri
  1. d/dx ( sin x ) = cos x
  2. d/dx ( cos x ) = – sin x
  3. d/dx ( tan x ) = sec2 x
  4. d/dx ( cot x ) = – csc2 x
  5. d/dx ( sec x ) = sec x tan x
  6. d/dx ( csc x ) = -csc x cot x
F. Turunan fungsi invers
(f-1)(y) = 1/(f’ (x)), atau dy/dx 1/(dx/dy)
G. Rumus Dasar Turunan dari Turunan Fungsi
Beberapa aturan yang ada di dalam turunan fungsi antara lain:
  1. f(x), menjadi f'(x) = 0
  2. Jika f(x) = x, maka f’(x) = 1
  3. Aturan pangkat berlaku jika f(x) = xn, maka f’(x) = n X n – 1
  4. Aturan kelipatan konstanta berlaku jika (kf) (x) = k. f’(x)
  5. Aturan rantai berlaku jika ( f o g ) (x) = f’ (g (x)). g’(x))
H. Rumus-rumus Turunan Fungsi AlJabar
1. Rumus Turunan Fungsi Pangkat
Turunan Fungsi berbentuk pangkat, turunannya bisa memakai rumus: Rumus Turunan Fungsi Pangkatsebagai berikut:
rumus turunan fungsi aljabar pangkat
Sehingga, rumus turunan fungsi pangkatnya adalah:
turunan fungsi pangkat

2.  Rumus turunan hasil kali fungsi 

Rumus turunan hasil kali fungsi

Rumusan Fungsi f(x) turunan yang terbentuk dari perkalian fungsi u(x) dan v(x), adalah sebagai berikut:
turunan fungsi aljabar hasil kali
Sehingga, rumus turunan fungsinya yaitu:
f'(x) = u’v +uv’

3. Rumus turunan fungsi pembagian Rumus turunan fungsi pembagian

pembagian
Sehingga, rumus turunan fungsinya yaitu:
rumus turunan fungsinya

4. Rumus turunan pangkat dari fungsi

 Rumus turunan pangkat dari fungsi

Perlu diingat, jika f(x) = xn , maka dari itu:
turunan pangkat dari fungsi
Sehingga, rumus turunan fungsinya yaitu:
f'(x) = nu(n – 1) . u’

5. Rumus-rumus Turunan Trigonometri

Berdasarkan definisi dari turunan, maka bisa kita dapatkan beberapa rumus turunan trigonometri yaitu sebagai berikut: (dengan u dan v masing-masing fungsi dari x), antara lain: y’ =
  1. y = sin x→ y’ = cos x
  2. y = cos x → y’ = -sin x
  3. y = tan x → y’ = secx
  4. y = cot x → y’ =  -cscx
  5. y = sec x → y’
  6. y = csc x → y’ = csc × cot x
  7. y = sinn  xy’ = n sinn-1 × cos x
  8. y = cosn  x → y’ = -n cosn-1 × sin x
  9. y = sin u → y’ = u’ cos u
  10. y = cos u → y’ = u’ sin u
  11. y = tan u → y’ = ui secu
  12. y = cot u → y’ = -u’ cscu
  13. y = sec u → y’ = u’ sec u tan u
  14. y = csc u → y’ = u’ csc u cot u
  15. y = sinn  u → y’ = n.u’ sinn-1 cos u
  16. y = cosn u → y’ = -n.u’  cosn-1 . sin u
I. Turunan Fungsi Aljabar

*Definisi Turunan

Turunan fungsi f(x) terhadap x didefinisikan oleh:
Rumus Turunan Fungsi Pangkat
dengan syarat limitnya ada.

*Notasi Turunan

Turunan pertama fungsi y = f(x) pada x bisa kita notasikan seperti berikut ini:
  • y’ = f’x ⇒ lagrange
  • notasi turunan ⇒ leibniz
  • Dxy = Dx[f(x)]⇒ euler
Dari definisi di atas bisa kita turunkan beberapa rumus turunan seperti di bawah ini:
  1. f(x) = k  ⇒  f ‘(x) = 0
  2. f(x) = k x  ⇒  f ‘(x) = k
  3. f(x) = xn ⇒ f ‘(x) = nxn-1
  4. f(x) = k u(x)  ⇒ f ‘(x) = k u'(x)
  5. f(x) = u(x) ± v(x)  ⇒ f ‘(x) = u'(x) ± v'(x)
dengan k = konstan
Perhatikan beberapa contoh berikut ini:
  1. f(x) = 5  ⇒  f ‘(x) = 0
  2. f(x) = 2x  ⇒  f ‘(x) = 2
  3. f(x) = x2 ⇒  f ‘(x) = 2x2-1 = 2x
  4. y = 2x4  ⇒  y’ = 2. 4x4-1 = 8x3
  5. y = 2x4 + x2 − 2x  ⇒  y’ = 8x3 + 2x − 2
Untuk mencari turunan dari fungsi yang memuat bentuk akar atau pecahan, langkah pertama yang harus kita lakukan yaitu merubah terlebih dahulu fungsi tersebut ke dalam bentuk pangkat (eksponen).
Berikut terdapat beberapa sifat akar dan pangkat yang sering dipakai, atara lain:
  • xm . xn = xm+n
  • xm/xn = xm-n
  • 1/xn = x-n
  • √x = x1/2
  • n√xm = xm/n

Tidak ada komentar:

Posting Komentar

Kemitraan Lembaga Keuangan Penanam Modal/Investasi dan Build Operates Transfer (BOT)

Menurut undang-undang republik Indonesia no.9 tahun 1995 kemitraan adalah kerjasama usaha antara usaha kecil dan usaha menengah atau usaha b...